RNDr. Ing. Petr Holota, DrSc.
Narozen:
Pozice:
Výzkumný pracovník, fyzikální geodezie
Vzdělání:
1960 – 1964 Střední průmyslová škola zeměměřická v Praze obor geodézie
1964 – 1969 Stavební fakulta ČVUT v Praze, obor geodézie a kartografie studium geodeticko-astronomické specializace oboru geodézie a kartografie (Ing.)
1970 – 1976 matematicko-fyzikální fakulta Univerzity Karlovy, oboru matematika (Mgr.)
1982 složení rigorosních zkoušek na Karlově Univerzitě (RNDr.)
1987 obhájil svou doktorskou disertaci na Československé akademii věd. Úspěšně v ní spojil své obsáhlé poznatky z obou vědních oborů a získal titul doktor fyzikálně-matematických věd (DrSc.)
1983 absolvoval krátkodobý studijní pobyt na Geodetickém ústavu univerzity v Uppsale, Švédsko
1985-1986, 1990 a krátkodobě pak v roce2002 a 2004 mu bylo uděleno vědecké stipendium Alexander von Humboldtovy nadace, které absolvoval v Geodetickém ústavu University ve Stuttgartu, SRN.
Jazyky:
angličtina, němčina, ruština, francouzština
ResearcherID T-7571-2018. Scopus Author ID 6506579327
PUBLIKAČNÍ A VÝZKUMNÁ ČINNOST:
- Laplacian structure mirroring surface topography in determining the gravity potential by successive approximations (2021)
- Differential geometry and curvatures of equipotential surfaces in the realization of the World Height System (2020)
- Laplacian structure, solution domain geometry and successive approximations in gravity field studies (2020)
- Session G1.1 on Recent Developments in Geodetic Theory held at the European Geosciences Union General Assembly 2020 (EGU2020), 4-8 May 2020 (2020)
- Valné shromáždění Evropské geovědní unie ve Vídni – EGU2020 (2020)
- Divergence of Gradient and the Solution Domain in Gravity Field Studies (2019)
- Galerkin’s Matrix for Neumann’s Problem in the Exterior of an Oblate Ellipsoid of Revolution: Gravity Potential Approximation by Buried Masses (2019)
- Green’s Function Method Extended by Successive Approximations and Applied to Earth’s Gravity Field Recovery (2019)
- Integral Representation and Green’s Function Method in Gravity Field Studies (2019)
- On the Construction of Green’s Function when Combining Terrestrial Data and Global Models for Earth’s Gravity Field Recovery (2019)
- Session G1.1 on Recent Developments in Geodetic Theory held at the European Geosciences Union General Assembly 2019 (EGU2019), Vienna, Austria, 7-12 April 2019 (2019)
- Using the Green’s function method for solution domains with a complicated boundary in Earth’s gravity field studies (2019)
- Valné shromáždění Evropské geovědní unie ve Vídni – EGU2019 (2019)
- Green’s Function Method Extended by Successive Approximations and Applied to Earth’s Gravity Field Recovery (2018)
- Transformation of Topography into the Structure of Laplace’s Operator and an Iteration Solution of the Linear Gravimetric Boundary Value Problem (2018)
- Boundary Complexity and Kernel Functions in Classical and Variational Concepts of Solving Geodetic Boundary Value Problems (2017)
- Boundary Complexity in Classical and Variational Concepts of Solving Geodetic Boundary Value Problems (2017)
- Geodesy and Mathematics: Recent Developments in the Deep Rooted Relationship (2017)
- Laplacian Versus Topography in the Solution of the Linear Gravimetric Boundary Value Problem by Means of Successive Approximations (2017)
- Session G1.1 on Recent Developments in Geodetic Theory held at the European Geosciences Union General Assembly 2017 (EGU2017), Vienna, Austria, 23-28 April 2017 (2017)
- Weak Solution Concept and Galerkin’s Matrix for the Exterior of an Oblate Ellipsoid of Revolution in the Representation of the Earth’s Gravity Potential by Buried Masses (2017)
- 26. valné shromáždění Mezinárodní unie geodetické a geofyzikální (2016)
- An improved methodology for precise geoid/quasigeoid modelling (2016)
- Combining terrestrial data and satellite-only models in Earth’s gravity field studies: optimization and integral kernels (2016)
- Construction of Galerkin’s Matrix for Elementary Potentials and an Ellipsoidal Solution Domain Based on Series Developments and General Relations between Legendre’s Functions of the first and the Second Kind: Application in Earth’s Gravity Field Studies (2016)
- Domain Transformation and the Iteration Solution of the Linear Gravimetric Boundary Value Problem (2016)
- Modification of ellipsoidal coordinates and successive approximations in the solution of the linear gravimetric boundary value problem (2016)
- Recent Developments in Geodetic Theory, Session G1.1, EGU General Assembly, Vienna 2016 (2016)
- Small Modifications of Curvilinear Coordinates and Successive Approximations Applied in Geopotential Determination (2016)
- Valné shromáždění Evropské geovědní unie ve Vídni – EGU2016 (2016)
- An ellipsoidal analogue to Hotine’s kernel: Accuracy and applicability (2015)
- An Open CL implementation of ellipsoidal harmonics (2015)
- Aproximativní reprezentace Legendreových funkcí prvního a druhého druhu při konstrukci Galerkinovy matice a modelování gravitačního potenciálu Země v systému elipsoidálních souřadnicích (2015)
- Aproximativní reprezentace Legendreových funkcí prvního a druhého druhu při konstrukci Galerkinovy matice a modelování gravitačního potenciálu Země v systému elipsoidálních souřadnicích (2015)
- Differential geometry of equipotential surfaces and its relation to parameters of Earth?s gravity field models (2015)
- Domain transformation and the iteration solution of boundary value problems in gravity field studies (2015)
- Elementary potentials and Galerkin?s matrix for an ellipsoidal domain in the recovery of the gravity field (2015)
- Fundamental solution of Laplace?s equation in oblate spheroidal coordinates and Galerkin?s matrix for Neumann?s problem in Earth?s gravity field studies (2015)
- On the combination of terrestrial data and GOCE based models in Earth?s gravity field studies: compatibility and optimization (2015)
- On the construction of Galerkin?s matrix for elementary potentials in case of an ellipsoidal solution domain in Earth?s gravity field studies (2015)
- On the construction of Galerkin?s matrix for elementary potentials in case of an ellipsoidal solution domain in Earth?s gravity field studies (2015)
- Problémy matematické fyziky při studiu gravitačního pole a tvaru Země (2015)
- Recent Developments in Geodetic Theory, Session G1.1, EGU General Assembly, Vienna 2015 (2015)
- Summation of series and an approximation of Legendre?s functions in constructing integral kernels for the exterior of an ellipsoid: Application to boundary value problems in physical geodesy (2015)
- Summation of series and an approximation of Legendre?s functions in constructing integral kernels for the exterior of an ellipsoid: Application to boundary value problems in physical geodesy (2015)