Priloha ¢. 5

Implementace algoritmii
vhodnych pro kartografickou generalizaci
SMD

TBO4CUZKOO1 Nmet3
PFiloha &. 5 - Implementace algoritm{ vhodnych pro kartografickou generalizaci

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

Uvod
Na zadkladé pozadavku budouciho uzivatele byly cizojazy¢né texty stazené z webovych stranek a
z odbornych publikaci ponechany v anglickém jazyce a v pavodnim grafickém layoutu.

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

1. Systéem GRASS

http://grasswiki.osgeo.org/wiki/V.generalize tutorial

NAME
v.generalize - Vector based generalization.
KEYWORDS

vector, generalization, simplification, smoothing, displacement, network
generalization

SYNOPSIS

v.generalize

v.generalize help

v.generalize [-cr] input=name output=name [type=string][,string,...]] method=string
threshold=float [look_ahead=integer] [reduction=float] [slide=float]
[angle_thresh=float] [degree_thresh=integer] [closeness_thresh=float]
[betweeness_thresh=float] [alpha=float] [beta=float] [iterations=integer]
[layer=integer] [cats=range] [where=sql_query] [--overwrite] [--verbose] [--quiet]

Flags:
-C

Copy attributes
-r

This does nothing. It is retained for backwards compatibility
--overwrite

Allow output files to overwrite existing files
--verbose

Verbose module output
--quiet

Quiet module output

Parameters:
input=name
Name of input vector map
output=name
Name for output vector map
type=string[,string,...]
Feature type
Options: line,boundary,area
Default: line,boundary,area
method=string
Generalization algorithm
Options:
douglas,douglas_reduction,lang,reduction,reumann,boyle,sliding_averaging,di
stance_weighting,chaiken,hermite,snakes,network,displacement
douglas: Douglas-Peucker Algorithm

http://grasswiki.osgeo.org/wiki/V.generalize_tutorial

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

douglas_reduction: Douglas-Peucker Algorithm with reduction parameter
lang: Lang Simplification Algorithm
reduction: Vertex Reduction Algorithm eliminates points close to each other
reumann: Reumann-Witkam Algorithm
boyle: Boyle's Forward-Looking Algorithm
sliding_averaging: McMaster's Sliding Averaging Algorithm
distance_weighting: McMaster's Distance-Weighting Algorithm
chaiken: Chaiken's Algorithm
hermite: Interpolation by Cubic Hermite Splines
snakes: Snakes method for line smoothing
network: Network generalization
displacement: Displacement of lines close to each other
threshold=float
Maximal tolerance value
Options: 0-1000000000
look_ahead=integer
Look-ahead parameter
Default: 7
reduction=float
Percentage of the points in the output of 'douglas_reduction' algorithm
Options: 0-100
Default: 50
slide=float
Slide of computed point toward the original point
Options: 0-1
Default: 0.5
angle_thresh=float
Minimum angle between two consecutive segments in Hermite method
Options: 0-180
Default: 3
degree_thresh=integer
Degree threshold in network generalization
Default: 0
closeness_thresh=float
Closeness threshold in network generalization
Options: 0-1
Default: 0
betweeness_thresh=float
Betweeness threshold in network generalization
Default: O
alpha=float
Snakes alpha parameter
Default: 1.0
beta=float
Snakes beta parameter
Default: 1.0
iterations=integer
Number of iterations
Default: 1
layer=integer

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

Layer number
A single vector map can be connected to multiple database tables. This
number determines which table to use.
Default: 1
cats=range
Category values
Example: 1,3,7-9,13
where=sql_query
WHERE conditions of SQL statement without ‘where' keyword
Example: income < 1000 and inhab >= 10000

DESCRIPTION

v.generalize is a module for the generalization of GRASS vector maps. This module
consists of algorithms for line simplification, line smoothing, network generalization
and displacement (new methods may be added later). For more examples and nice
pictures, see tutorial

If type=area is selected, boundaries of selected areas will be generalized, and the
options cats, where, and layer will be used to select areas.

NOTES

(Line) simplification is a process of reducing the complexity of vector features. The
module transforms a line into another line consisting of fewer vertices, that still
approximate the original line. Most of the algorithms described below select a subset
of points on the original line.

(Line) smoothing is a "reverse" process which takes as input a line and produces a
smoother approximate of the original. In some cases, this is achieved by inserting
new vertices into the original line, and can total up to 4000% of the number of
vertices in the original. In such an instance, it is always a good idea to simplify the
line after smoothing.

Smoothing and simplification algorithms implemented in this module work line by line,
i.e. simplification/smoothing of one line does not affect the other lines; they are
treated separately. Also, the first and the last point of each line is never translated
and/or deleted.

SIMPLIFICATION
v.generalize contains following line simplification algorithms:

e Douglas-Peucker Algorithm

o Douglas-Peucker Reduction Algorithm
e Lang Algorithm

e Vertex Reduction

e Reumann-Witkam Algorithm

« Remove Small Lines/Areas

http://users.ox.ac.uk/~orie1848/tutorial.html

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

Different algorithms require different parameters, but all the algorithms have one
parameter in common: the threshold parameter, given in map units (for latitude-
longitude locations: in decimal degree). In general, the degree of simplification
increases with the increasing value of threshold.

ALGORITHM DESCRIPTIONS

o Douglas-Peucker - "Quicksort" of line simplification, the most widely used
algorithm. Input parameters: input, threshold. For more information, see:
http://geometryalgorithms.com/Archive/algorithm _0205/algorithm_0205.htm.

e Douglas-Peucker Reduction Algorithm is essentially the same algorithm as the
algorithm above, the difference being that it takes an additional reduction
parameter which denotes the percentage of the number of points on the new
line with respect to the number of points on the original line. Input parameters:
input, threshold, reduction.

e Lang - Another standard algorithm. Input parameters: input, threshold,
look_ahead. For an excellent description, see:
http://www.sli.unimelb.edu.au/gisweb/LGmodule/LGLangVisualisation.htm.

e Vertex Reduction - Simplest among the algorithms. Input parameters: input,
threshold. Given a line, this algorithm removes the points of this line which
are closer to each other than threshold. More precisely, if p1 and p2 are two
consecutive points, and the distance between p2 and pl is less than
threshold, it removes p2 and repeats the same process on the remaining
points.

« Reuman-Witkam - Input parameters: input, threshold. This algorithm quite
reasonably preserves the global characteristics of the lines. For more
information, see:
http://www.ifp.uni-
stuttgart.de/lehre/vorlesungen/GIS1/Lernmodule/Lg/LG_de 6.html (german).

Douglas-Peucker and Douglas-Peucker Reduction Algorithm use the same method
to simplify the lines. Note that
v.generalize input=boundary_county output=boundary_county dp20
method=douglas threshold=20
is equivalent to
v.generalize input=boundary_ county
output=boundary_county dp_red20 100 \

method=douglas_reduction threshold=20 reduction=100
However, in this case, the first method is faster. Also observe that douglas_reduction
never outputs more vertices than douglas, and that, in general, douglas is more

efficient than douglas_reduction. More importantly, the effect of
v.generalize input=boundary_county output=boundary_county_ dp_red0_30
\

method=douglas_reduction threshold=0 reduction=30

is that 'out’ contains approximately only 30% of points of 'in'.

SMOOTHING
The following smoothing algorithms are implemented in v.generalize:

http://geometryalgorithms.com/Archive/algorithm_0205/algorithm_0205.htm
http://www.sli.unimelb.edu.au/gisweb/LGmodule/LGLangVisualisation.htm
http://www.ifp.uni-stuttgart.de/lehre/vorlesungen/GIS1/Lernmodule/Lg/LG_de_6.html
http://www.ifp.uni-stuttgart.de/lehre/vorlesungen/GIS1/Lernmodule/Lg/LG_de_6.html

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

e Boyle's Forward-Looking Algorithm - The position of each point depends on
the position of the previous points and the point look_ahead ahead.
look_ahead consecutive points. Input parameters: input, look_ahead.

« McMaster's Sliding Averaging Algorithm - Input Parameters: input, slide,
look_ahead. The new position of each point is the average of the look_ahead
points around. Parameter slide is used for linear interpolation between old and
new position (see below).

« McMaster's Distance-Weighting Algorithm - Takes the weighted average of
look_ahead consecutive points where the weight is the reciprocal of the
distance from the point to the currently smoothed point. The parameter slide is
used for linear interpolation between the original position of the point and
newly computed position where value 0 means the original position. Input
parameters: input, slide, look_ahead.

« Chaiken's Algorithm - "Inscribes" a line touching the original line such that the
points on this new line are at least threshold apart. Input parameters: input,
threshold. This algorithm approximates the given line very well.

« Hermite Interpolation - This algorithm takes the points of the given line as the
control points of hermite cubic spline and approximates this spline by the
points approximately threshold apart. This method has excellent results for
small values of threshold, but in this case it produces a huge number of new
points and some simplification is usually needed. Input parameters: input,
threshold, angle_thresh. Angle_thresh is used for reducing the number of
the points. It denotes the minimal angle (in degrees) between two consecutive
segments of a line.

e Snakes is the method of minimisation of the "energy" of a line. This method
preserves the general characteristics of the lines but smooths the "sharp
corners” of a line. Input parameters input, alpha, beta. This algorithm works
very well for small values of alpha and beta (between 0 and 5). These
parameters affect the "sharpness"” and the curvature of the computed line.

One of the key advantages of Hermite Interpolation is the fact that the computed line
always passes through the points of the original line, whereas the lines produced by
the remaining algorithms never pass through these points. In some sense, this
algorithm outputs a line which "circumscribes” the input line.

On the other hand, Chaiken's Algorithm outputs a line which "inscribes" a given line.
The output line always touches/intersects the centre of the input line segment
between two consecutive points. For more iterations, the property above does not
hold, but the computed lines are very similar to the Bezier Splines. The disadvantage
of the two algorithms given above is that they increase the number of points.
However, Hermite Interpolation can be used as another simplification algorithm. To
achieve this, it is necessary to set angle_thresh to higher values (15 or so).

One restriction on both McMasters' Algorithms is that look_ahead parameter must be
odd. Also note that these algorithms have no effect if look_ahead = 1.

Note that Boyle's, McMasters' and Snakes algorithm are sometimes used in the
signal processing to smooth the signals. More importantly, these algorithms never
change the number of points on the lines; they only translate the points, and do not
insert any new points.

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

Snakes Algorithm is (asymptotically) the slowest among the algorithms presented
above. Also, it requires quite a lot of memory. This means that it is not very efficient
for maps with the lines consisting of many segments.

DISPLACEMENT

The displacement is used when the lines overlap and/or are close to each other at
the current level of detalil. In general, displacement methods move the conflicting
features apart so that they do not interact and can be distinguished.

This module implements an algorithm for displacement of linear features based on
the Snakes approach. This method generally yields very good results; however, it
requires a lot of memory and is not very efficient.

Displacement is selected by method=displacement. It uses the following
parameters:

o threshold - specifies critical distance. Two features interact if they are closer
than threshold apart.

« alpha, beta - These parameters define the rigidity of lines. For larger values of
alpha, beta (>=1), the algorithm does a better job at retaining the original
shape of the lines, possibly at the expense of displacement distance. If the
values of alpha, beta are too small (<=0.001), then the lines are moved
sufficiently, but the geometry and topology of lines can be destroyed. Most
likely the best way to find the good values of alpha, beta is by trial and error.

« iterations - denotes the number of iterations the interactions between the
lines are resolved. Good starting points for values of iterations are between
10 and 100.

The lines affected by the algorithm can be specified by the layer, cats and where
parameters.

NETWORK GENERALIZATION

Used for selecting "the most important” part of the network. This is based on the
graph algorithms. Network generalization is applied if method=network. The
algorithm calculates three centrality measures for each line in the network and only
the lines with the values greater than thresholds are selected. The behaviour of
algorithm can be altered by the following parameters:

o degree_thresh - algorithm selects only the lines which share a point with at
least degree_thresh different lines.

e closeness_thresh - is always in the range (0, 1]. Only the lines with the
closeness centrality value at least closeness_thresh apart are selected. The
lines in the centre of a network have greater values of this measure than the
lines near the border of a network. This means that this parameter can be
used for selecting the centre(s) of a network. Note that if closeness_thresh=0
then everything is selected.

e betweeness_thresh - Again, only the lines with a betweeness centrality
measure at least betweeness_thresh are selected. This value is always
positive and is larger for large networks. It denotes to what extent a line is in
between the other lines in the network. This value is large for the lines which

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

lie between other lines and lie on the paths between two parts of a network. In
the terminology of road networks, these are highways, bypasses, main
roads/streets, etc.

All three parameters above can be presented at the same time. In that case, the
algorithm selects only the lines which meet each criterion.

Also, the outputed network may not be connected if the value of betweeness_thresh
is too large.

EXAMPLES

Simplification

Simplification of county boundaries with DP method (North Carolina sample dataset):
v.generalize input=boundary_county output=boundary_county_ dp20 \
method=douglas threshold=20

Smoothing

Smoothing of road network with Chaiken method (North Carolina sample dataset):
v.generalize input=roads output=roads_chaiken method=chaiken \
threshold=1

SEE ALSO

v.clean, v.dissolve

v.generalize Tutorial (GRASS-Wiki)

AUTHORS

Daniel Bundala, Google Summer of Code 2007, Student
Wolf Bergenheim, Mentor
Fixes: Markus Metz

Last changed: $Date: 2015-02-09 07:09:02 -0800 (Mon, 09 Feb 2015) $

Main index - vector index - Full index

© 2003-2015 GRASS Development Team

10

https://grass.osgeo.org/grass64/manuals/v.clean.html
https://grass.osgeo.org/grass64/manuals/v.dissolve.html
http://grasswiki.osgeo.org/wiki/V.generalize_tutorial
https://grass.osgeo.org/grass64/manuals/index.html
https://grass.osgeo.org/grass64/manuals/vector.html
https://grass.osgeo.org/grass64/manuals/full_index.html
http://grass.osgeo.org/

TBO4CUZKOO1 Nmet3
PFiloha &. 5 - Implementace algoritm{ vhodnych pro kartografickou generalizaci

2 CGAL Computed Geometry Algorithm Library

http://www.cqgal.org/

2.1 Uzivatelské licence
The LGPL

The Lesser General Public License (v3+) gives you the right to use and copy the code freely. It is also
possible to modify the code under the condition that the resulting modification is released as source
code under the LGPL with any binary distribution of your software that uses these LGPL parts.

The GPL

The GPL (v3+) is an Open Source license that, gives you the right to use, copy and modify the code
freely. If you distribute your software based on GPLed CGAL data structures, you are obliged to
distribute the modifications of CGAL you made, and you are furthermore obliged to distribute the
source code of your own software under the GPL.

2.2 Convex Hull Algorithms

2.2.1 2D Convex Hulls and Extreme Points

Susan Hert and Stefan Schirra

This package provides functions for computing convex hulls in two dimensions as well as functions
for checking if sets of points are strongly convex are not. There are also a number of functions
described for computing particular extreme points and subsequences of hull points, such as the
lower and upper hull of a set of points.

User Manual Reference Manual

2.3 Polygons

2.3.1 2D Polygons

11

http://www.cgal.org/
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/gpl.html
http://doc.cgal.org/latest/Convex_hull_2/index.html#Chapter_2D_Convex_Hulls_and_Extreme_Points
http://doc.cgal.org/latest/Convex_hull_2/group__PkgConvexHull2.html

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

Geert-Jan Giezeman and Wieger Wesselink

This package provides a 2D polygon class and operations on sequences of points, like bounding box,
extremal points, signed area, simplicity and convexity test, orientation, and point location. The demo

includes operations on polygons, such as computing a convex partition, and the straight skeleton.

User Manual Reference Manual

2.3.2 2D Polygon Partitioning

Susan Hert

This package provides functions for partitioning polygons in monotone or convex polygons. The
algorithms can produce results with the minimal number of polygons, as well as approximations
which have no more than four times the optimal number of convex pieces but they differ in their
runtime complexities.

User Manual Reference Manual

2.3.3 2D Straight Skeleton and Polygon Offsetting

Fernando Cacciola

This package implements an algorithm to construct a halfedge data structure representing the
straight skeleton in the interior of 2D polygons with holes and an algorithm to construct inward
offset polygons at any offset distance given a straight skeleton.

User Manual Reference Manual

12

http://doc.cgal.org/latest/Polygon/index.html#Chapter_2D_Polygon
http://doc.cgal.org/latest/Polygon/group__PkgPolygon2.html
http://doc.cgal.org/latest/Partition_2/index.html#Chapter_2D_Polygon_Partitioning
http://doc.cgal.org/latest/Partition_2/group__PkgPolygonPartitioning2.html
http://doc.cgal.org/latest/Straight_skeleton_2/index.html#Chapter_2D_Straight_Skeleton_and_Polygon_Offsetting
http://doc.cgal.org/latest/Straight_skeleton_2/group__PkgStraightSkeleton2.html

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

2.3.4 2D Minkowski Sums

Ron Wein, Alon Baram, Eyal Flato, Efi Fogel, Michael Hemmer, Sebastian Morr

This package consists of functions that compute the Minkowski sum of two simple straight-edge
polygons in the plane. It also contains functions for computing the Minkowski sum of a polygon and a
disc, an operation known asoffsetting or dilating a polygon. The package can compute the exact
representation of the offset polygon, or provide a guaranteed approximation of the offset.

User Manual Reference Manual

2.3.5 2D Polyline Simplification

Andreas Fabri

This package enables to simplify polylines with the guarantee that the topology of the polylines does
not change. This can be done for a single polyline as well as for a set of polyline constraints in a
constrained triangulation. The simplification can be controlled with cost and stop functions.

User Manual Reference Manual

2.4 2D Intersection of Curves

Baruch Zukerman, Ron Wein, and Efi Fogel

This package provides three free functions implemented based on the sweep-line paradigm: given a
collection of input curves, compute all intersection points, compute the set of subcurves that are

13

http://doc.cgal.org/latest/Minkowski_sum_2/index.html#Chapter_2D_Minkowski_Sums
http://doc.cgal.org/latest/Minkowski_sum_2/group__PkgMinkowskiSum2.html
http://doc.cgal.org/latest/Polyline_simplification_2/index.html#Chapter_2D_Polyline_simplification
http://doc.cgal.org/latest/Polyline_simplification_2/group__PkgPolylineSimplification2.html

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

pairwise interior-disjoint induced by them, and check whether there is at least one pair of curves
among them that intersect in their interior.

User Manual Reference Manual

2.5 Triangulations and Delaunay Triangulations

2.5.1 2D Triangulation

Mariette Yvinec

This package allows to build and handle various triangulations for point sets two dimensions.
Any CGAL triangulation covers the convex hull of its vertices. Triangulations are built incrementally
and can be modified by insertion or removal of vertices. They offer point location facilities. The
package provides plain triangulation (whose faces depend on the insertion order of the vertices) and
Delaunay triangulations. Regular triangulations are also provided for sets of weighted points.
Delaunay and regular triangulations offer nearest neighbor queries and primitives to build the dual
Voronoi and power diagrams. Finally, constrained and Delaunay constrained triangulations allows to
force some constrained segments to appear as edges of the triangulation. Several versions of
constrained and Delaunay constrained triangulations are provided: some of them handle
intersections between input constraints segment while others do not.

User Manual Reference Manual

2.6 Voronoi Diagrams

2.6.1 2D Segment Delaunay Graphs

Menelaos Karavelas

An algorithm for computing the dual of a Voronoi diagram of a set of segments under the Euclidean
metric. It is a generalization of the standard Voronoi diagram for points. The algorithms provided are
dynamic.

14

http://doc.cgal.org/latest/Sweep_line_2/index.html#Chapter_2D_Intersection_of_Curves
http://doc.cgal.org/latest/Sweep_line_2/group__PkgIntersectionOfCurves2.html
http://doc.cgal.org/latest/Triangulation_2/index.html#Chapter_2D_Triangulations
http://doc.cgal.org/latest/Triangulation_2/group__PkgTriangulation2.html

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

User Manu

2.6.2 L Infinity Segment Delaunay Graphs

Panagiotis Cheilaris, Sandeep Kumar Dey, Evanthia Papadopoulou

Algorithms and geometric traits for computing the dual of the Voronoi diagram of a set of points and

segments under the Leo metric.

User Manual Reference Manual

2.6.3 2D Apollonius Graphs (Delaunay Graphs of Disks)

Menelaos Karavelas and Mariette Yvinec

Algorithms for computing the Apollonius graph in two dimensions. The Apollonius graph is the dual
of the Apollonius diagram, also known as the additively weighted Voronoi diagram. The latter can be
thought of as the Voronoi diagram of a set of disks under the Euclidean metric, and it is a

generalization of the standard Voronoi diagram for points. The algorithms provided are dynamic.

User Manual Reference Manual

2.6.4 2D Voronoi Diagram Adaptor

Menelaos Karavelas

15

http://doc.cgal.org/latest/Segment_Delaunay_graph_2/index.html#Chapter_2D_Segment_Delaunay_Graphs
http://doc.cgal.org/latest/Segment_Delaunay_graph_Linf_2/index.html#Chapter_L_Infinity_Segment_Delaunay_Graphs
http://doc.cgal.org/latest/Segment_Delaunay_graph_Linf_2/group__PkgSDGLinf.html
http://doc.cgal.org/latest/Apollonius_graph_2/index.html#Chapter_2D_Apollonius_Graphs
http://doc.cgal.org/latest/Apollonius_graph_2/group__PkgApolloniusGraph2.html

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

The 2D Voronoi diagram adaptor package provides an adaptor that adapts a 2-dimensional
triangulated Delaunay graph to the corresponding Voronoi diagram, represented as a doubly
connected edge list (DCEL) data structure. The adaptor has the ability to automatically eliminate, in a
consistent manner, degenerate features of the Voronoi diagram, that are artifacts of the
requirement that Delaunay graphs should be triangulated even in degenerate configurations.
Depending on the type of operations that the underlying Delaunay graph supports, the adaptor
allows for the incremental or dynamic construction of Voronoi diagrams and can support point
location queries.

User Manual Reference Manual

2.7 Mesh Generation

2.7.1 2D Conforming Triangulations and Meshes

Laurent Rineau

This package implements a Delaunay refinement algorithm to construct conforming triangulations
and 2D meshes. Conforming Delaunay triangulations are obtained from constrained Delaunay
triangulations by refining constrained edges until they are Delaunay edges. Conforming Gabriel
triangulations are obtained by further refining constrained edges until they become Gabriel edges.
The package provides also a 2D mesh generator that refines triangles and constrained edges until
user defined size and shape criteria on triangles are satisfied. The generated meshes can be
optimized using the Lloyd algorithm, also provided in this package. The package can handle
intersecting input constraints and set no restriction on the angle formed by two constraints sharing
an endpoint.

User Manual Reference Manual

2.7.2 Point Set Processing

16

http://doc.cgal.org/latest/Voronoi_diagram_2/index.html#Chapter_2D_Voronoi_Diagram_Adaptor
http://doc.cgal.org/latest/Voronoi_diagram_2/group__PkgVoronoiDiagramAdaptor2.html
http://doc.cgal.org/latest/Mesh_2/index.html#Chapter_2D_Conforming_Triangulations_and_Meshes
http://doc.cgal.org/latest/Mesh_2/group__PkgMesh2.html

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

Pierre Alliez, Clement Jamin, Quentin Mérigot, Jocelyn Meyron, Laurent Saboret, Nader Salman,
Shihao Wu

This CGAL component implements methods to analyze and process unorganized point sets. The input
is an unorganized point set, possibly with normal attributes (unoriented or oriented). The point set
can be analyzed to measure its average spacing, and processed through functions devoted to the
simplification, outlier removal, smoothing, normal estimation, normal orientation and feature edges
estimation.

User Manual Reference Manual

2.8 Spatial Searching and Sorting

2.8.1 2D Range and Neighbor Search

b
e

[

Matthias Bdsken

This package supports circular, triangular, and isorectangular range search queries as well as (k)
nearest neighbor search queries on 2D point sets. In contrast to the spatial searching package, this
package uses a Delaunay triangulation as underlying data structure.

User Manual Reference Manual

2.8.2 Optimal Distances

Kaspar Fischer, Bernd Gértner, Thomas Herrmann, Michael Hoffmann, and Sven Schénherr

This package provides algorithms for computing the distance between the convex hulls of two point
sets in d-dimensional space, without explicitely constructing the convex hulls. It further provides an

algorithm to compute the width of a point set, and the furthest point for each vertex of a convex
polygon.

User Manual Reference Manual

17

http://doc.cgal.org/latest/Point_set_processing_3/index.html#Chapter_Point_Set_Processing
http://doc.cgal.org/latest/Point_set_processing_3/group__PkgPointSetProcessing.html
http://doc.cgal.org/latest/Point_set_2/index.html#Chapter_2D_Range_and_Neighbor_Search
http://doc.cgal.org/latest/Point_set_2/group__PkgPointSet2.html
http://doc.cgal.org/latest/Polytope_distance_d/index.html#Chapter_Optimal_Distances
http://doc.cgal.org/latest/Polytope_distance_d/group__PkgOptimalDistances.html

TB04CUZKOO1 Nmet3
Pfiloha &. 5 - Implementace algoritm@ vhodnych pro kartografickou generalizaci

3 Stony Brook Repository

http://www3.cs.stonybrook.edu/~algorith/major_section/1.6.shtml

3.1 1.6 Computational Geometry

N
N
N
P

Robust Geometric Primitives Convex Hull Triangulation

W k] - - a & -
Voronoi Diagrams Nearest Neighbor Search Range Search

L

[

Point Location Intersection Detection Bin Packing

18

http://www3.cs.stonybrook.edu/~algorith/major_section/1.6.shtml
http://www3.cs.stonybrook.edu/~algorith/files/geometric-primitives.shtml
http://www3.cs.stonybrook.edu/~algorith/files/convex-hull.shtml
http://www3.cs.stonybrook.edu/~algorith/files/triangulations.shtml
http://www3.cs.stonybrook.edu/~algorith/files/voronoi-diagrams.shtml
http://www3.cs.stonybrook.edu/~algorith/files/nearest-neighbor.shtml
http://www3.cs.stonybrook.edu/~algorith/files/range-search.shtml
http://www3.cs.stonybrook.edu/~algorith/files/point-location.shtml
http://www3.cs.stonybrook.edu/~algorith/files/intersection-detection.shtml
http://www3.cs.stonybrook.edu/~algorith/files/bin-packing.shtml

A
A

Medial-Axis Traﬁsformation

T,C
-
n = »

= B

\&—<

Shape Similarity

S

<
_

Minkowski Sum

30
bey

Polygon Partitioning

Motion Planning

19

TBO4CUZKOO1 Nmet3
PFiloha &. 5 - Implementace algoritm{ vhodnych pro kartografickou generalizaci

0P

gﬁ

@>

Simplifying Polygons

Maintaining Line
Arrangements

http://www3.cs.stonybrook.edu/~algorith/files/thinning.shtml
http://www3.cs.stonybrook.edu/~algorith/files/polygon-partitioning.shtml
http://www3.cs.stonybrook.edu/~algorith/files/simplifying-polygons.shtml
http://www3.cs.stonybrook.edu/~algorith/files/shape-similarity.shtml
http://www3.cs.stonybrook.edu/~algorith/files/motion-planning.shtml
http://www3.cs.stonybrook.edu/~algorith/files/maintaining-arrangements.shtml
http://www3.cs.stonybrook.edu/~algorith/files/maintaining-arrangements.shtml
http://www3.cs.stonybrook.edu/~algorith/files/minkowski-sum.shtml

	Úvod
	1. Systém GRASS
	NAME
	KEYWORDS
	SYNOPSIS
	Flags:
	Parameters:

	DESCRIPTION
	NOTES
	SIMPLIFICATION

	ALGORITHM DESCRIPTIONS
	SMOOTHING
	DISPLACEMENT
	NETWORK GENERALIZATION

	EXAMPLES
	Simplification
	Smoothing

	SEE ALSO
	AUTHORS

	2 CGAL Computed Geometry Algorithm Library
	2.1 Uživatelské licence
	2.2 Convex Hull Algorithms
	2.2.1 2D Convex Hulls and Extreme Points

	2.3 Polygons
	2.3.1 2D Polygons
	2.3.2 2D Polygon Partitioning
	2.3.3 2D Straight Skeleton and Polygon Offsetting
	2.3.4 2D Minkowski Sums
	2.3.5 2D Polyline Simplification

	2.4 2D Intersection of Curves
	2.5 Triangulations and Delaunay Triangulations
	2.5.1 2D Triangulation

	2.6 Voronoi Diagrams
	2.6.1 2D Segment Delaunay Graphs
	2.6.2 L Infinity Segment Delaunay Graphs
	2.6.3 2D Apollonius Graphs (Delaunay Graphs of Disks)
	2.6.4 2D Voronoi Diagram Adaptor

	2.7 Mesh Generation
	2.7.1 2D Conforming Triangulations and Meshes
	2.7.2 Point Set Processing

	2.8 Spatial Searching and Sorting
	2.8.1 2D Range and Neighbor Search
	2.8.2 Optimal Distances

	3 Stony Brook Repository
	3.1 1.6 Computational Geometry

